Note
Go to the end to download the full example code.
Kawashima¶
Data for Main / Gan / Kawashima
import os
import matplotlib.pyplot as plt
import numpy as np
import refidx as ri
plt.style.use("../../doc/refidx.mplstyle")
db = ri.DataBase()
matid = ['main', 'GaN', 'Kawashima']
mat = db.get_item(matid)
wr = mat.wavelength_range
lamb = np.linspace(*wr, 1000)
index = mat.get_index(lamb)
fig, ax = plt.subplots(2, 1, figsize=(3, 3))
ax[0].plot(lamb, index.real, "-", color="#aa0044")
ax[1].plot(lamb, index.imag, "-", color="#6886b3")
ax[0].set_xlabel(r"Wavelength ($\rm μm$)")
ax[1].set_xlabel(r"Wavelength ($\rm μm$)")
ax[0].set_ylabel(r"$n^{\prime}$")
ax[1].set_ylabel(r"$n^{\prime\prime}$")
plt.suptitle(mat)
mat.print_info(
html=True,
tmp_dir=os.path.join("..","..", "doc", "auto_gallery","GaN"),
filename="out_main_GaN_Kawashima.html",
)
Comments
Single-crystalline hexagonal GaN (α-GaN) film on (0001) sapphire substrate. Ordinary ray (o, E⊥c). Room temperature.
References
1) T. Kawashima, H. Yoshikawa, S. Adachi. Optical properties of hexagonal GaN, J. Appl. Phys. 82, 3528-3535 (1997)
2) S. Logothetidis, J. Petalas, M. Cardona, T. D. Moustakas. Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN, Phys. Rev. B 50, 18017-18029 (1994)
* Authors of Ref. 1 provide a simplified model of the interband transitions (MDF) based on their experimental data combined with experimental data from Ref. 2.
[Calculation script (Python)]
Total running time of the script: (0 minutes 0.341 seconds)
Estimated memory usage: 225 MB