Note
Go to the end to download the full example code.
Lee¶
Data for Main / Bn / Lee
import os
import matplotlib.pyplot as plt
import numpy as np
import refidx as ri
plt.style.use("../../doc/refidx.mplstyle")
db = ri.DataBase()
matid = ['main', 'BN', 'Lee']
mat = db.get_item(matid)
wr = mat.wavelength_range
lamb = np.linspace(*wr, 1000)
index = mat.get_index(lamb)
fig, ax = plt.subplots(2, 1, figsize=(3, 3))
ax[0].plot(lamb, index.real, "-", color="#aa0044")
ax[1].plot(lamb, index.imag, "-", color="#6886b3")
ax[0].set_xlabel(r"Wavelength ($\rm μm$)")
ax[1].set_xlabel(r"Wavelength ($\rm μm$)")
ax[0].set_ylabel(r"$n^{\prime}$")
ax[1].set_ylabel(r"$n^{\prime\prime}$")
plt.suptitle(mat)
mat.print_info(
html=True,
tmp_dir=os.path.join("..","..", "doc", "auto_gallery","BN"),
filename="out_main_BN_Lee.html",
)
Comments
Hexagonal boron nitride (h-BN). In-plane refractive index (ordinary ray, no). h-BN flakes of thickness around 1000 nm were mechanically exfoliated from a bulk crystal and transferred onto quartz substrates for transmission measurements. The single oscillator model is used to fit transmission spectra of several hBN flakes of different thickness.
References
S. Y. Lee, T. Y. Jeong, S. Jung, K. J. Yee, Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys. Status Solidi B, 256, 1800417 (2018)
Total running time of the script: (0 minutes 0.335 seconds)
Estimated memory usage: 225 MB